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Abstract

The Parallel Architecture Simulation Tool (ParSim)[1], built upon the discrete event
simulation framework DaSSF (Darthmouth Scalable Simulation Framework) allows de-
tailed simulation and predicitive evaluation of a wide range of parallel architectures.
Representational flexibility is achieved with the Domain Modeling Language (DML),
through which DaSSF separates model configuration and initialization from implemen-
tation. Nodes, network interface cards, and switches, are implemented in C++ but
instantiated, parameterized and interconnected in DML; this code or “model.dml” con-
stitutes a complete ParSim model. This approach provides flexibility, but manipulation
at this level is difficult when working with large models, where components and their
interconnections are on the order of thousands. Previously, specialized scripts were
developed to assemble and interconnect components and output DML for particular
architectures. The model description parser presented in this paper essentially follows
the same procedure, but automates and provides a generalized interface for common
elements of the process. The model description is a domain-specific DML translator
allowing high-level manipulation of ParSim models and improved handling in their cre-
ation, modification, and readability.

1 Introduction

ParSim is an ongoing project to produce high fidelity simulations[2] of ASCI/Extreme-scale
(more than one thousand processors) parallel architectures with an end goal of providing
predictive capability in the evaluation of existing and hypothetical architectures, and the
performance of programs run on them. We model machines as constructed from a set of
basic components including switches, nodes, and network interface cards. The components
approximate their real counterparts in varying levels of detail and include parameters for
bandwidth, transmission delay, and others in the case of switches; for nodes and network
interface cards possible parameters include packet size, routing methods, and others which
determine messaging behavior. The underlying network is modeled at the packet level and
based on the Quadrics Elan 3 protocol. Message and packet transmission through the

∗This work was funded by the U.S. Department of Energy under ASCI Discom2.
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simulated network, and the trace events generated through this process, provide useful data
for analyzing performance. Another approach, using ParSim’s direct execution feature,
allows any MPI program to execute on the simulated machine as if it were executed on the
actual machine. Because performance is highly dependent on applications and how well
they run in a parallel environment, direct execution is a powerful method of analysis in the
evaluation of hypothetical architectures.

1.1 Framework and Implementation

ParSim is built on Darthmouth Scalable Simulation Framework[4], a C++ implementa-
tion of the Scalable Simulation Framework specification (SSF). DaSSF is well suited for
discrete event simulations of large scale such as those we are interested in studying. The
SSF specification originally envisioned simulating the Internet and other massive dynamic
networks, and for ParSim, where the network is a central component, the SSF API is a
natural fit. ParSim component classes define network components, routing methods, mes-
sages, packets and other constructs. They are implemented in C++ and derived from the
base classes defined by the SSF specification: Entity, Event, Process, Input Channel, and
Output Channel.

1.2 DML

A model may be constructed by instantiating components within C++ code, but DaSSF pro-
vides a better approach using the Domain Modeling Language (DML), which isolates model
specification from implementation. DML is a generic syntax which supports recursive-like
nesting of submodels, or subsections of DML code, and relatively convenient specifica-
tion of large structures. DaSSF adapts the generic DML syntax, adding various exten-
sions and defining its semantics. DaSSF uses DML for specification of runtime parameters
runtime.dml, runtime architectures machine.dml, and most significantly, model construc-
tion model.dml.

1.3 Machine Representation in DML

ParSim uses DML in model construction for the instantiation and parameterization of NICs,
nodes, switches, and for specification of their interconnection. This trivial model shows how
entities are declared and interconnected in DML:

ENTITY [

INSTANCEOF "Node"

PARAMS [

INT 0

]

]

ENTITY [

INSTANCEOF "NIC"

PARAMS [

INT 1

]

]
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ENTITY [

INSTANCEOF "Switch"

PARAMS [

INT 2

]

]

MAP [FROM 0(NETOUT) TO 1(NETIN) DELAY 1]

MAP [FROM 1(NETOUT) TO 0(NETIN) DELAY 1]

MAP [FROM 1(NETOUT) TO 2(LINKIN0) DELAY 1]

MAP [FROM 2(LINKOUT0) TO 1(NETIN) DELAY 1]

where Node is the name of the C++ class we are casting from. The PARAMS[] section speci-
fies the required parameters and additional optional parameters are set inside CONFIGURE[]
(not shown).

Each MAP statement corresponds to channel mapping in one direction. So

MAP [FROM 0(NETOUT) TO 1(NETIN) DELAY 1]

establishes an outgoing connection from node ID 0 to NIC ID 1. In the types of architectures
we are interested in, components are always wired in both directions, so the DML statement
above is accompanied by

MAP [FROM 1(NETOUT) TO 0(NETIN) DELAY 1]

Finally, the following statements connect the NIC to port 0 on the switch:

MAP [FROM 1(NETOUT) TO 2(LINKIN0) DELAY 1]

MAP [FROM 2(LINKOUT0) TO 1(NETIN) DELAY 1]

1.4 Motivation

A complete ParSim model includes a collection of DML statements exemplified by the code
above, with a section declaring and parameterizing each component, and MAP directives
for each of their interconnections. For large architectures, despite DML’s recursive features,
the DML for large models can be quite lengthy (several thousands of lines) and difficult
to manage. This document details the design and usage of a domain-specific language and
parser for DML translation which allow for high-level manipulation and easier management
of large-scale ParSim models.

2 Model Description Parser

The parser and associated files are organized as

parse

components/

models/
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The parse1 program is called as parse input model description . Sample model de-
scriptions are included in models. components contains DML code for commonly used
components. Detailed explanations of components, design and operation of the parser, and
the usage of the model description language are included in the following sections.

2.1 Components

The parser views components as one of two basic types: switches or nodes. A switch embod-
ies the DML code that instantiates a TSwitch entity and nodes include initialization code for
both TSMPNode and TNIC (the C++ implementation class names for these components).
The code associated with a switch typically looks like:

ENTITY [

ID $ID

INSTANCEOF "TSwitch"

PARAMS [

INT $ID

INT 8

INT 2

]

CONFIGURE [

PACKET_DELAY $PACKET_DELAY{50}

NET_BANDWIDTH $NET_BANDWIDTH{400}

]

]

While a node clusters TNIC and TSMPNode together as:

CLUSTER [

ID $ID

ENTITY [

INSTANCEOF "TSMPNode"

PARAMS [

INT $ID

INT $ID

STRING "$ID"

]

CONFIGURE [

MESSAGES [

$MESSAGES{}

]

]

]

ENTITY [

INSTANCEOF "TNIC"

PARAMS [

INT $ID1

STRING "$ID"

INT $3{8}

]

1implemented in C using lex and yacc
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CONFIGURE [

MESSAGE_DELAY $MESSAGE_DELAY{5}

PACKET_DELAY $PACKET_DELAY{1}

PACKET_SIZE $PACKET_SIZE{320}

METHOD "$METHOD{Quadrics1}"

BUS_BANDWIDTH $BUS_BANDWIDTH{200}

NET_BANDWIDTH $NET_BANDWIDTH{400}

ACK_BYTES $ACK_BYTES{64}

]

]

MAP [FROM 0(BUSOUT) TO 1(BUSIN) DELAY $channel_delay{5}]

MAP [FROM 1(BUSOUT) TO 0(BUSIN) DELAY $channel_delay{5}]

]

There are no restrictions on the type of code that may be associated with a switch or
node, but this division allows for consistent ordering and ID assignment as it should appear
in the output model DML and also simplifies component interconnectivity.

2.2 Component Templates

A component’s code is included in the description file or read from a template residing in
the components directory. A template may be associated with any component and typically
includes DML code and additional variables, labeled as $VARIABLE NAME. These are either
automatically set by the parser (e.g $ID is substituted for the corresponding component
ID) or by a statements within the model description file. Parameters should be included
within the template as $<parameter name>{<default value>}, e.g: $PACKET SIZE{320}.
The code segments above are examples of a typical switch and node template and illustrate
the usage of these two types of embedded variables.

The component type is determined by its associated template, where template name is
identical to the component symbol as it appears in the model description file. Template
location in components/switch or components/node determines type or is stated explicitly
when declaring a template within the model description.

2.3 Output Structure

The unique file components/main defines default top-level structure of the output
model.dml, providing the final glue for postproccesed DML segments. In most cases the
structure is simple and it is sufficient to use the default template components/main which
is supplied as:

parsim [

node [

ID 0

INSTANCEOF "TSMPNode"

]

nic [

ID 1

INSTANCEOF "TNIC"

]

switch [
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INSTANCEOF "TSwitch"

]

]

MODEL [

$nodes

$switches

$connections

]

Here there are references to three variables set in parsing: $nodes, $switches,
$connections. These variables are interpolated for the corresponding DML segments gen-
erated by the parser. Typically they are output as a continuous block but are kept separate
in case any other code or comments are to be included between them. In addition to the
output files specified in the model description, three files switches.dml, nodes.dml, and
connections.dml are created which contain these as separate blocks of output.

2.4 ID Assignment

Components are assigned ID’s according to type and order of appearance in layer assignment
statements. Node IDs start at 0 with switches starting at 2∗DML ID MULTIPLIER. The
C constant DML ID MULTIPLIER is currently set to 100000 so switch IDs start at 200000.
A component’s ID is referenced by inclusion of $ID within the template. Additionally, $IDx
where 0 < x < 10, outputs x∗DML ID MULTIPLIER+ID. This is used to specify the
absolute ID for a NIC in:

ENTITY [

INSTANCEOF "TNIC"

PARAMS [

INT $ID1

STRING "$ID"

...

3 Model Description Language

The parser takes as input a description file that assembles DML and outputs to the de-
sired files. Input to the parser consists of four basic types of statements, with their usage
summarized below.

3.1 Parameter Assignment

Syntax: component symbol:component property component value
Examples:

n:PACKET_DELAY{10}

n:MESSAGES{

MESSAGE [

TIME 0

TARGET "1"
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SIZE 384

]

MESSAGE [

TIME 28000

TARGET "1"

SIZE 704

]

MESSAGE [

TIME 84000

TARGET "1"

SIZE 1024

]

MESSAGE [

TIME 168000

TARGET "1"

SIZE 1344

]

}

sets the node’s PACKET DELAY to 10 assuming $PACKET DELAY{<default value>} was
defined for the component n.

Component parameters are typically named with the convention that parameters di-
rectly corresponding to DML parameters are capitalized, numbered for parameters appear-
ing in PARAMS[] section, or lower-cased otherwise. For example, a node template is defined
as:

ENTITY [

_extends .parsim.nic

PARAMS [

INT $ID1

STRING "$ID"

INT $3{8}

]

CONFIGURE [

MESSAGE_DELAY $MESSAGE_DELAY{5}

PACKET_DELAY $PACKET_DELAY{1}

PACKET_SIZE $PACKET_SIZE{320}

METHOD "$METHOD{Quadrics1}"

BUS_BANDWIDTH $BUS_BANDWIDTH{200}

NET_BANDWIDTH $NET_BANDWIDTH{400}

ACK_BYTES $ACK_BYTES{64}

]

]

MAP [FROM 0(BUSOUT) TO 1(BUSIN) DELAY $channel_delay{5}]

MAP [FROM 1(BUSOUT) TO 0(BUSIN) DELAY $channel_delay{5}]

]

and parser statements set various parameters with:

n:3{10} # sets third parameter to 10

n:channel_delay{4}

n:PACKET_DELAY{10}
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3.2 Layer Declaration

Syntax: layer name=layer components
Examples:

# declare a layer with 64 nodes

l0=n[64]

# layer with 16 nodes

l1=s[16]

# individual components included in layer

layer=s,s1,s,s,a,s,s

3.2.1 Description

The symbols l0 and l1 are arbitrary and are used for reference at later points to specify
connections. Additionally, any component can be named freely but numbers at the end of a
symbol have special significance: they declare a distinct instance of their parent (parents are
labeled without number or number=0, e.g: n, n0), copying and maintaining all properties
from their parent until redefined.

3.3 Connect Directives

In both cases, layer to layer or component to component, connect statements set internal
connections used to output the corresponding DML MAP[] statements.

3.3.1 Layer to Layer Wiring

Syntax: connect source layer,destination layer <mapping vector> <delay vector>
Examples:

connect l0,l1

connect l0,l1 [2,1,0]

connect l0,l1 [] [2,1]

connect 10,l1 [1,0,2,3,4,5] [3,3]

The first example (no mapping vector is provided) wires source to destination iterating
through source components and connection port 0 of each source to the the first available
port > 4 on the destination layer. IMPORTANT: This is the method to use in wiring nodes
to the first layer and no other interface exists other than manual component to component
wiring (next section). The reason for this is that nodes are not assigned a base-four ID and
all other connect statements calculate their destination based on a source base-four ID.

The second example includes a mapping matrix [2,1,0] that maps a connection from
a source component to a component in the destination layer as a function of the base four
digits of the source ID and source port[3].

The third example doesn’t use a mapping vector but includes an empty [] as a place-
holder. The second vector specifies outgoing and incoming channel delay respectively.

8



3.3.2 Component to Component Wiring

Syntax: source component<port>:destination component1<port>,destination component2<port>,...
<wire vector> <delay vector>
Examples:

connect 1:2,3,4,5

connect 0:1(0),2(1),3(2),4(3)

connect 1(7):200000(0)

The first example wires a component with ID 1 to components corresponding to ID
2,3,4,5 in order of lowest available port with source ports restricted to 0 through 3 and
destination ports 4 through 7.

The second example wires component ID 1’s available ports to specific ports on the
output ID’s. Note: whenever a port is stated explicitly, the source and destination port
restrictions stated above do not apply, it may map any port 0 through 7.

The third example wires a specific source port (7) on a component (ID 1) to a specific
destination port (0 on component ID 200000).

For all connect statements, either layer to layer or component to component, attempting
to remap a port triggers a warning, but the action allowed.

3.4 Output Blocks

3.4.1 File Output

Syntax: file name<source>
Examples:

runtime.dml{

...

runtime DML

...

}

The example above takes anything included within {} and writes it to the specified
output file, runtime.dml, interpolating values for $nodes, $switches, $connections.

The line below opens components/main (since source is empty) and writes the contents
to model.dml, interpolating parser values in the same fashion as the previous example:

model.dml{}

{parsim [

node [

ID 0

INSTANCEOF "TSMPNode"

]

nic [

ID 1

INSTANCEOF "TNIC"

]

switch [
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INSTANCEOF "TSwitch"

]

]

MODEL [

$nodes

$switches

$connections

]

}

The functionality in the example above is identical to the previous two but writes to
stdout since file name was not specified.

3.4.2 Template Output

Syntax:

type component_name{

...

DML code

...

}

Examples:

node n{CLUSTER [

ID $ID

ENTITY [

_extends .parsim.node

PARAMS [

INT $ID

INT $ID

STRING "$ID"

]

...

}

switch s{ENTITY [

ID $ID

_extends .parsim.switch

PARAMS [

INT $ID

INT 8

INT 2

]

CONFIGURE [

PACKET_DELAY $PACKET_DELAY{50}

NET_BANDWIDTH $NET_BANDWIDTH{400}

]

]

}
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The code above declares a component template for a node and switch. The template may
include $VARIABLES and overall is treated the same as if it were read from the components
directory, and can now be included in any layer declaration statements. Note: defining
a template overrides any previous templates read from the components directory in cases
where the name is not unique.

4 A Complete Example

A model of a 64 node cluster wolverine with three layers of switches is constructed in
the model description below. Here, the typical component templates components/node/n
and components/switch/s are used. Switch s uses its default parameters defined within
the template. Node n also uses default values for some parameters, but redefines others
in section 1. Parameter values may span multiple lines as seen in n1:MESSAGES{...}.
This statement is different from the previous ones in that it sets up a new component
template n1 which inherits all values set for n up to this point and also sets the node’s
MESSAGES parameter to the specified value. This component can now be instantiated in
layer declarations as in section 2.

In section 2, layers are declared with nodes and lowest level switch layers first. Al-
though the symbols l0, l1, l2, and l3 are arbitrary names for layers, and layer connection
is determined separately by connect statements (section 3), their ordering determines ID
assignment. The first node of the first layer declaration, n1 in this case, is assigned ID 0
and ID incremented for every node encountered in subsequent layer declaration statements.
Switch IDs start at 200000, maintaining a separate counter, with ID incremented and as-
signed according to the same method. In this example, nodes are assigned ID 0 - 63 and
switches 200000 - 200047.

The first connect statement in section 3 connects the nodes layer l0 to switch layer 1
l1 using 3ns for in/out channel delay. In effect this connects the NICs bundled with the
node to switches in the first layer. The second and third connect statements are similar but
use different values for channel delay and make use of a mapping vector. The first connect
statement, using the mapping vector [1,0,2], directs the parser to use the first base-four
ID digit of source switch as the destination port, the first digit of the destination switch’s
base-four ID is equal to the source port number and the second digit of the destination
equals the second ID of the source.[1] This operation is applied across all components of
the source layer.

Finally, section 4 directs output to two files, runtime.dml and model.dml. The first
output statement model.dml{}, because no values are included between the brackets, copies
the contents of components/main, the default top-level output template, to model.dml,
interpolating parser values set for $nodes, $switches, and $connections. This completes
the model.dml. The second statement runtime.dml{...} simply outputs its contents to
runtime.dml.

# section 1: parameter assignment

n:MESSAGE_DELAY{11000}

n:PACKET_DELAY{120}

n:PACKET_SIZE{320}

n:BUS_BANDWIDTH{950}
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n:NET_BANDWIDTH{400}

n:ACK_BYTES{999999}

n:channel_delay{1.05263}

n1:MESSAGES{

MESSAGE [

TIME 0

TARGET "1"

SIZE 384

]

MESSAGE [

TIME 28000

TARGET "1"

SIZE 704

]

MESSAGE [

TIME 84000

TARGET "1"

SIZE 1024

]

MESSAGE [

TIME 168000

TARGET "1"

SIZE 1344

]

}

# section 2: layer declarations

l0=n1,n[63]

l1=s[16]

l2=s[16]

l3=s[16]

# section 3: connections

connect l0,l1 [] [3,3]

connect l1,l2 [1,0,2] [1,1]

connect l2,l3 [2,1,0] [10,10]

# section 4: output

model.dml{}

runtime.dml{EXECUTABLE "parsim3"

MODEL "model.dml"

MACHINE "machine.dml"

STARTTIME 0

ENDTIME 4.44e+06

ENVIRONMENT [

WOLVERINE "1"

LOG_STYLE "IMMEDIATE"

LOG_MASK "ERROR WARNING INFO"

DATA_STYLE "AT WRAPUP"

DATA_MASK "INFO"

EPILOG_STYLE "IMMEDIATE"

EPILOG_FILE "wolverine.elg"

WORKLOAD "TestWorkload"

NETWORK "MFQuadrics"
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FIRST_NODE 0

FIRST_NIC 100000

FIRST_SWITCH 200000

MPI_COMM_SIZE "64"

]

DATAFILE "output"

}

5 Large-scale Representations

The example below is an idealized representation of a 4096 node machine. The network is
arranged in a fat-tree of six layers:

l0=n[4096]

l1=s[1024]

l2=s[1024]

l3=s[1024]

l4=s[1024]

l5=s[1024]

l6=s[1024]

connect l0,l1

connect l1,l2 [1, 0, 2, 3, 4, 5]

connect l2,l3 [2, 0, 1, 3, 4, 5]

connect l3,l4 [3, 4, 0, 1, 2, 5]

connect l4,l5 [1, 0, 2, 3, 4, 5]

connect l5,l6 [5, 1, 2, 3, 4, 0]

model.dml{}

This representation produces an output model of approximately 6.1MB. Component
parameters are applied uniformly, producing rather redundant DML code, but the resulting
interconnection network is complex. A network diagram is useful in providing a quick
method of visual verification in complex network topologies. After successful parsing of the
model description file, internal structures used for DML translation are used to render a
simple network diagram.
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Figure 1: A simple network diagram showing the left 1/5 portion of an idealized 4096 node
architecture whose network is a arranged in a six-layer quarternary tree. Nodes are pictured
in the bottom layer.
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